Evaluation of anti-bacterial effects of nickel nanoparticles on biofilm production by Staphylococcus epidermidis

نویسندگان

  • Morteza Vahedi
  • Nima Hosseini-Jazani
  • Saber Yousefi
  • Maryam Ghahremani
چکیده

Background and Objectives Staphylococcus epidermidis produces biofilm by extracellular polysaccharides, causing bacterial adherence to different surfaces. Anti-microbial effects of nickel nanoparticles on some bacterial strains such as S. aureus and Escherichia coli have been determined in limited studies. The aim of the present study is to examine the inhibitory effect of nickel nanoparticles on biofilm formation using clinical isolates of S. epidermidis and its hemolytic effect on human red blood cells. Materials and Methods Twenty two S. epidermidis isolates were collected and identified by standard microbiological methods. Microtiter plate method was used to determine the biofilm production in bacterial isolates. The amounts of biofilm formation by isolates in the presence of 0.01, 0.05, 0.1, and 1 mg/mL concentrations of nickel nanoparticles were measured. Hemolytic activity of different concentrations of nickel nanoparticles was measured on human RBC suspensions. Results Twenty isolates were strong, and two isolates were moderate biofilm producers. Biofilm formation significantly decreased in the presence of 0.05, 0.1, and 1 mg/mL of nickel nanoparticles (p<0.05). Although in the presence of 0.01 mg/mL of nickel nanoparticles, decrease in biofilm formation was observed but it was not statistically significant (p=0.448). Slight hemolytic activity was seen in the presence of nickel nanoparticles. Conclusion In this study, the ability of biofilm production was demonstrated for all clinical isolates of S. epidermidis. On the other hand, the lowering effects of nickel nanoparticles on biofilm formation were observed.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Anti bacterial effects of nickel nano-particles on biofilm production amounts by B.capacia ATCC 25416

Background & Aims: B.cepacia is one of the causative agents of health care associated infections which have the ability of attachment to different surfaces and biofilm formation is one of the most important virulence factors in pathogenesis of this microorganism. Nanoparticles are key components which are considered for the designing of new antimicrobial agents, no studies have been done on the...

متن کامل

بررسی اثـر نانـوذرات نقـره بر بیـوفیلم‌های ناشی از استافیلوکوکوس اپیدرمیدیس

Background and Objective: Staphylococcus epidermidis produces extracellular polysaccharide which is known as a biofilm. Biofilm is highly effective in establishing of this bacterium infections and can be formed on medical devices that are used in the body. The purpose of this study was to evaluate the effects of silver colloidal nanoparticles on bacterial growth and biofilm form...

متن کامل

In vitro anti-biofilm activity of Quercus brantii subsp. persica on human pathogenic bacteria

Background and objectives: Quercus brantii subsp. persica is used in folk medicine to treat infections in Iran. There is not available report on the anti-biofilm activity of Quercus brantii subsp.  persica. The aim of the present study was to investigate the effects of Quercus brantii subsp. persica against...

متن کامل

Evaluation of Anti biofilm and Antibiotic Potentiation Activities of Silver Nanoparticles Against some Nosocomial Pathogens

Nowadays silver nanoparticles (AgNPs) are used as antimicrobial due to its well known physical, chemical, and biological properties. A large collection of bacterial cells adhering to a surface is called bacterial biofilm. Exposure to silver nano particles (AgNPs) may prevent colonization of new bacteria onto the biofilm. In the present work, we have investigated whether the biofilm format...

متن کامل

Effect of the nanoliposomal formulations of rifampin and N-acetyl cysteine on staphylococcus epidermidis biofilm

Objective(s): Staphylococcus epidermidis is a common cause of medical device-associated infections due to biofilm formation, and its elimination is extremely challenging. Although rifampin efficacy against S. epidermidis biofilms has been confirmed, its use as a single agent may lead to resistance. As such, it is assumed that the combination of rifampin and N-acetylcysteine (NAC) could exert ad...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 9  شماره 

صفحات  -

تاریخ انتشار 2017